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In the first part of the paper, the stochastic dynamics of the Peyrard-Bishop-Dauxois �PBD� DNA model is
studied. A one-dimensional averaged Itô stochastic differential equation governing the total energy of the
system and the associated Fokker-Planck equation governing the transition probability density function of the
total energy are derived from the Langevin equations for the base-pair �bp� separation of the PBD DNA model
by using the stochastic averaging method for quasinonintegrable Hamiltonian systems. The stationary prob-
ability density function of the average energy and the mean square of the bp separation are obtained by solving
the reduced Fokker-Planck equation. In the second part of the paper, the local denaturation of the thermalized
PBD DNA model is studied as a first-passage-time problem in the energy. A backward Kolmogorov equation
and a Pontryagin equation are derived from the averaged Itô equation and solved to yield the waiting-time
distribution and the mean bp opening time. All the analytical results are confirmed with those from Monte
Carlo simulation. It is pointed out that the proposed method may yield a reasonable mean bp opening time if
the friction coefficient is fixed using experimental results.
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I. INTRODUCTION

More than fifty years after the discovery of its double-
helix structure, DNA is still of increasing interest to scien-
tists who try to unveil its remarkable properties and func-
tions. Although the detailed structure of DNA is known, the
static structure of the DNA molecule is not sufficient to ex-
plain its functions. In fact, DNA breathing �local denatur-
ation and reclosing of the double-stranded structure� is cease-
less. From the biological point of view, this breathing is a
necessary step for DNA replication, transcription, denatur-
ation, and protein binding. Owing to the relatively weak hy-
drogen bonds in base pairs �bps� �energy less than 2kBT per
bp �1��, the denaturation can be activated by thermal fluctua-
tion. Usually, larger bubbles �local denatured regions� oc-
curred in AT-rich regions �2�. At the melting temperature Tm,
the size and number of the denaturation bubbles increase,
and eventually the two strands separate; this is called the
denaturation transition or melting. Recently, the dynamics of
DNA bubbles has been monitored by using fluorescence cor-
relation spectroscopy �3�. It was found that the characteristic
relaxation time is 20–100 �s, which is 3–4 orders of mag-
nitude higher than the open bp lifetime estimated by NMR
�nuclear magnetic resonance of imino-proton exchange� �4�.

So far, most theoretical studies and molecular dynamical
simulations on DNA bubble dynamics have used the Poland-
Scherage model �5� or the Peyrard-Bishop-Dauxois �PBD�
model �6,7�. The Poland-Scherage free energy was intro-
duced into the Langevin equation governing the stochastic
bubble dynamics, and the corresponding one-dimensional
Fokker-Planck equation governing the probability density of
open bps was established. The expressions for the bubble
survival distribution and characteristic time for bubble clos-

ing and opening were obtained �8–11�. On the other hand,
the PBD model has been used for estimating the DNA melt-
ing temperature, thermodynamical instability of DNA, and
identification of the starting site for DNA transcription
�12–15�. Each of these two models has its merits and short-
comings, and these two groups of theoretical studies yield
results for the mean bp opening time that are different by
several orders of magnitude. Even for the same parameters,
e.g., the friction coefficient, values differing by several or-
ders of magnitude have been obtained in these two groups of
studies �14,15�. To be consistent with experimental results,
some parameters in theoretical studies have to be fixed or
rescaled �3,13�.

Since the study of bubble dynamics of heteropolymeric
DNA is more difficult than that of homopolymeric DNA
�16,17�, as a first step, only homopolymeric DNA is consid-
ered in the present paper. Here, the PBD DNA model is
regarded as a multiple-degree-of-freedom nonlinear dynami-
cal system, and the thermal fluctuation is taken into account
by adding random excitations and friction terms to the model
equations based on the fluctuation dissipation theorem and
Einstein relation. In the last decade, the nonlinear stochastic
dynamics in Hamiltonian formulation has been well devel-
oped in mechanics by the present second author and his co-
workers �18,19�. In the present paper, the stationary behavior
and local denaturation of the thermalized PBD DNA model
will be studied by using the stochastic averaging method for
a quasi-Hamiltonian system �20–22�, and the results will be
confirmed by using Monte Carlo simulation. Finally, it will
be pointed out that the theoretical result for the mean bp
open time may be matched with the experimental data by
properly adjusting the friction coefficient.

II. EQUATIONS FOR THERMALIZED PBD DNA MODEL

The PBD model, a popular model for DNA, is illustrated
in Fig. 1. It comprises two backbones representing the sugar-*Corresponding author: wqzhu@yahoo.com
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phosphate strands and some side chains attached to the back-
bones representing the bases. These side chains or bases in
one strand are able to interact with their complementary side
chains attached to the other strand. The following Morse
potential M�yi� describes the interaction between the two
bases in each pair:

M�yi� = ��e−ayi − 1�2, �1�

where yi denotes the displacement from the equilibrium po-
sition of the relative distance between the two bases within
the ith bp �6,7�; � is the dissociation energy of the bp ��
�0.03 eV at room temperature 25 °C�; a is a parameter that
sets the spatial scale of the potential; a�4.5 Å−1 is deter-
mined according to a measurement that stretching a bp by
0.1 Å gives a variation of energy of 0.04 eV �23�. The
Morse potential has been chosen to model the hydrogen bond
in bps since it has the following excellent properties �see Fig.
1�. �i� It gives a strong repulsive force in the bp when yi
�0; �ii� it has a minimum and the attractive or repulsive
force is zero at the equilibrium position yi=0; �iii� it becomes
flat and the interaction of the bps vanishes gradually for very
large yi.

Only the bending motion of backbones is taken into ac-
count. The following approximate potential V�yi ,yi−1� de-
scribes the stacking interaction between adjacent bases:

V�yi,yi−1� =
1

2
K�1 + � exp�− ��yi + yi−1����yi − yi−1�2,

�2�

where the nonlinear intersite coupling, given by the exponen-
tial term which effectively modifies a harmonic spring con-
stant, is essential for representing local constraints in nucle-
otide motions, which result in long-range cooperative effects.
Physically, the constraint describes the change of the next-
neighbor stacking interaction due to the distortion of the hy-
drogen bonds connecting a bp, mediated by the redistribution
of the electrons on the corresponding bases. Potential �2� has
proved to be successful in giving not only a qualitative but
also a quantitative description of DNA denaturation. The
value chosen for K is K�0.06 eV Å−2, which is obtained
from the experimental results showing that proton-deuterium
exchange can occur on one bp without affecting the neigh-
bors �23�. �=2 and �=0.35 Å−1 are usually chosen for mo-
lecular dynamical simulation �13,15�. The stacking energies

are also highly dependent on the base sequence �24�.
To model the thermal denaturation process of DNA, it is

assumed that the main contribution to local opening of bps is
made by the separation of the two backbones. As a second
hierarchy of models, the helical structure of DNA is ne-
glected in PBD model to simplify the theoretical analysis.
The mass of all bases is assumed to be the same. As a result,
the motion for the model in Fig. 1 is governed by the fol-
lowing Langevin equations:

mb
d2yi

dt2 = −
�U�y�

�yi
, U�y� = �

i=1

N

M�yi� + �
i=2

N

V�yi,yi−1� ,

i = 1,2, . . . ,N . �3�

The Hamiltonian or total energy of the system is of the form

H =
1

2
mb�

i=1

N 	dyi

dt

2

+ U�y� , �4�

where y= �y1 ,y2 , . . . ,yN� and N is the number of bps. mb is
the mass of base, the average value of which is about mb
�327 daltons. The parameter values are hereafter rescaled
as follows: lengths in units of Å; energies in units of kBTr �kB
is the Boltzmann constant and Tr=37 °C is the reference
temperature�; mass in units of one base mass mb. Thus, the
time unit t0 is defined through kBTr=mbÅ2t0

−2�0.0267 eV,
which yields t0=1.13 ps. Using these new units, the dimen-
sionless values of � and K in Eqs. �1� and �2� are ��1 at
25 °C and K�2.

To study the dynamical behavior of DNA under thermal
fluctuation, a thermal bath is added to the PBD. A prevalent
and simple way to simulate a thermal bath is by adding a
fluctuating force �2D��i�t� and a friction force � dyi /dt to
each degree of freedom of the system Eq. �3� �25�, where � is
a constant linear friction coefficient and �i�t� are Gaussian
white noises in the sense of Stratonovich with correlation
functions

E��i�t�� j�t + t��� = �	�t�� , i = j ,

0, i � j .
 �5�

Here 	�t�� is the Dirac delta function and the fluctuation
dissipation theorem or the Einstein relation D�=�kBT �T is
the temperature� is applied. After this, Eq. �3� becomes

FIG. 1. A schematic representation of the PBD DNA model. It consists of two backbones with side chains facing each other. The
neighboring bps interact with each other with a PBD potential and each base interacts with its complementary base with a Morse potential.
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d2yi

dt2 + �
dyi

dt
+

�U�y�
�yi

= �2D��i�t�, i = 1,2, . . . ,N . �6�

Note that all variables in Eq. �6� are dimensionless after res-
caling.

III. STATIONARY STATISTICS OF THERMALIZED PBD
DNA MODEL

The observation of DNA molecules under thermal dena-
turation using cryomicroscopy showed that the denaturation
starts as local openings, called “denaturation bubbles,” that
grow with temperature and invade the whole molecule at the
denaturation temperature, causing the separation of the two
strands. Some numerical results obtained from a simulation
that mimics the thermal denaturation of the PBD model with
50 bps are shown in Fig. 2. Figure 2�a� is for the case of
constant temperature 25 °C and constant excitation intensity
D�=0.02. Occasionally, the bp separation distance is large in
some regions, corresponding to the denaturation bubbles. Af-
ter some time, those bubbles disappear and other bubbles
occur. In Fig. 2�b�, the excitation intensity D� increases in a
linear manner from 0 to 0.04. It is seen that the denaturation
is preceded by formation and growth of denaturation
bubbles. As a quantitative measure of the denaturation pro-
cess, the average energy E �obtained from the total energy H
divided by number N of bps� of the PBD DNA model is
shown in Fig. 2�c�, where the data of the two curves are
taken from Figs. 2�a� and 2�b�, respectively. It is seen clearly
that the average energy fluctuates around a constant for con-
stant temperature and increases with increasing temperature.
Thus, the average energy of the PBD DNA model will be
used for measuring the thermal denaturation in the following
theoretical analysis.

Equation �6� can be regarded as an N-degree-of-freedom
stochastically excited and dissipated Hamiltonian system
�18,19�. It can be converted into the following Itô stochastic
differential equations:

dyi = vidt, dvi = − ��U�y�/�yi + �vi�dt + �2D�dBi�t� ,

�7�

where Bi�t� are the standard Weiner processes. The Hamil-
tonian H or total energy of system �7� now reads

H = �
i=1

N
1

2
vi

2 + U�y� . �8�

It is seen from Eq. �8� that the necessary energy barrier �0
for initiating a bubble has not been included in the Hamil-
tonian H.

A Hamiltonian system may be integrable or noninte-
grable. An N-degree-of-freedom Hamiltonian system is said
to be integrable or completely integrable if there exist N
independent integrals of motion which are in involution �the
Poisson bracket of any two of these integrals vanishes�. For a
nonintegrable Hamiltonian system, there is only one inde-
pendent integral of motion, i.e., Hamiltonian H. The Hamil-
tonian system with Hamiltonian H in Eq. �8� is nonintegrable
since U�y� is nonseparable. Thus, Eq. �7� governs a stochas-
tically excited and dissipated nonintegrable Hamiltonian sys-
tem. The stochastic averaging method for quasinonintegrable
Hamiltonian systems �20� can be applied to obtain the statis-
tics of the system.

Since H is a function of y and v, the Itô stochastic differ-
ential equation for H can be derived from Eq. �7� by using
the Itô differential rule as follows:

dH = �ND� − ��
i=1

N

vi
2�dt + vidBi�t� . �9�

Among the 2N+1 variables H, y, and v in Eq. �9�, only 2N
variables are independent. In fact, v1 can be replaced by the
other 2N variables using the following expression:

v1 = 
�2�H − U�y�� − �
i=2

N

vi
2. �10�

Note that the friction coefficient � and excitation intensity
2D� are usually small. The Hamiltonian H in Eq. �9� is thus
a slowly varying process while the generalized displacement
y and generalized momenta v2 , . . . ,vN are rapidly varying
processes. According to a theorem due to Khasminskii �26�,
the H process converges weakly to a one-dimensional diffu-
sion process in a time interval of order �−1. In other words,
the H process may be replaced in the first approximation by
a diffusion process.

The Itô equation for this diffusion process can be obtained
by applying time averaging to Eq. �9�. Making use of the first
equation in Eq. �7�, i.e., dy1=v1dt, the time averaging can be
replaced by a space averaging with respect to y1 under the
condition that H is kept constant. To eliminate y2 , . . . ,yN and
v2 , . . . ,vN in the averaged Itô equation, the resulting equation
is further averaged with respect to y2 , . . . ,yN and v2 , . . . ,vN.
The last step involves an ergodic hypothesis which may be
stated as follows: the evolution of a completely noninte-
grable Hamiltonian system takes it, with equal probability,
through all states that are accessible from the starting point

FIG. 2. Results obtained from Monte Carlo simulation of the
thermalized PBD DNA model with 50 bps. �=1 for 25 °C. The
separation distance of the bps is shown by the gray scale. �a� In the
case of constant excitation intensity D�=0.02. The horizontal coor-
dinate is time t �in units of t0�. �b� In the case of a linear intensity D�

ramp ranging from 0 to 0.04. The horizontal coordinate is time or
temperature. �c� Average energy E �in units of kBTr�. The data for
the two curves are taken from Figs. 3�a� and 3�b�.
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subject to the constraint of energy conservation. As a result,
the averaged Itô equation for the Hamiltonian H is given by

dH = m�H�dt + �2�H�dB�t� , �11�

where the coefficients m�H� and �2�H� are obtained as fol-
lows �20�:

m�H� =
1

T�H���

�ND� − ��
i=1

N

vi
2�dy1dy2 ¯ dyNdv2 ¯ dvN,

�2�H� =
1

T�H���

�2D��
i=1

N

vi
2�dy1dy2 ¯ dyNdv2 ¯ dvN,

T�H� = �
�

	 1

v1

dy1dy2 ¯ dyNdv2 ¯ dvN. �12�

The integral domain � of the �2N−1�-fold integrals in Eq.
�12� is defined as

� = ���y,v2, . . . ,vN��
1

2�
i=2

N

vi
2 + U�y�  H . �13�

Replacing v1 with Eq. �10� and evaluating those integrals in
Eq. �12�, the following compact expressions for the coeffi-
cients in Eq. �12� can be obtained:

m�H� = ND� − 2�A�H�/B�H� ,

�2�H� = 4D�A�H�/B�H�, T�H� =
�N/223N/2−2

��N/2�
B�H� ,

A�H� = �
�

�H − U�y��N/2dy1dy2 ¯ dyN,

B�H� = �
�

�H − U�y��n/2−1dy1dy2 ¯ dyN, �14�

where ��·� is the Gamma function and the integral domain �
of the N-fold integrals in Eq. �14� is defined as

� = ��y�U�y�  H� . �15�

The Fokker-Planck equation associated with the averaged
Itô equation �11� is

�p

�t
= −

�

�H
�m�H�p� +

1

2

�2

�H2 ��2�H�p� , �16�

where p= p��H , t�H0� is the transition probability density
function of Hamiltonian H with initial condition

p��H,0�H0� = 	�H − H0� , �17�

or p= p�H , t� is the probability density of H with initial con-
dition

p�H,0� = p�H0� . �18�

The Fokker-Planck equation �16� is usually subjected to the
following boundary condition:

p,�p/�H → 0 when H → � . �19�

The one-dimensional Fokker-Planck equation �16� usually
can only be solved numerically. However, the exact station-
ary solution, i.e., the solution of the Fokker-Planck equation
�16� without a time-derivative term, can always be obtained
analytically. It is �20�

p�H� =
C

�2�H�
exp	2�

e

H m�x�
�2�x�

dx
 , �20�

where e is an arbitrary positive constant; C is the normaliza-
tion constant, which can be obtained by letting the integral of
the probability density p�H� in the domain �0,�� be equal to
1.

The stationary solution in Eq. �20� is the first approxima-
tion for the stationary probability density of Hamiltonian in
the original system �6�. The corresponding joint probability
density p�y ,v� can be obtained as follows �20�:

p�y,v� = ��p�H�T�H���H=H�y,v�. �21�

The other stationary statistics such as the stationary probabil-
ity density p�E� of the average energy E=H /N and the mean
square E�yi

2� can then easily be obtained from Eq. �21� as
follows:

p�E� = �Np�H��H=NE,

E�yi
2� = �

−�

�

yi
2p�y,v�dy1 ¯ dyNdv1 ¯ dvN. �22�

To check the accuracy of the theoretical solution �22�, a
Monte Carlo simulation of system �6� was performed. The
sample functions for the independent Gaussian white noises
�i�t� were generated by using the Box-Muller method. Then
the response was solved numerically by using the fourth-
order Runge-Kutta method with time step 0.02. The long-
time solution after 20 000 steps was regarded as the station-
ary ergodic response and taken to perform the statistical
analysis. Hereafter, the results obtained from simulation and
theoretical analysis are denoted by symbols � � and lines,
respectively.

The results for the stationary probability density of the
average energy, p�E�, are shown in Fig. 3. The N-fold inte-
grals in Eq. �14� require huge computations when the num-
ber of bps, N, is large. Here the theoretical results up to N
=6 are obtained. It is seen that the theoretical results and
those from simulation are in very good agreement. The the-
oretical result and that from simulation for the mean square
separation distance E�yi

2� are shown in Fig. 4. It is seen from
Fig. 4 that the two results are also in good agreement. Thus,
we believe that Eqs. �20�–�22� provide very good theoretical
formulas for the stationary statistics of the thermalized PBD
DNA model.

IV. LOCAL DENATURATION OF PBD DNA MODEL

As shown in Fig. 1, at any time during the denaturation
process, there exists a forklike structure consisting of closed
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and open bps. Obviously, the dynamical behavior of the bps
near the fork plays a key role in the denaturation process.
Thus, it is reasonable to investigate the local denaturation
using the forked part of the PBD DNA model. This supposi-
tion is verified by the simulation results shown in Fig. 5. In
the simulation, a bp is considered as open when its relative
displacement is larger than a threshold, which was chosen as
1 Å �15�. It is seen from Fig. 5 that the mean time for
opening a bp approaches a constant after the number of bps
in the fork reaches N=10. In view of the huge computations
for a large number of bps in a fork, a fork consisting of N
=6 bps is taken in the following theoretical calculation. The
mean time for opening a bp in the fork is estimated by treat-
ing it as the mean first-passage time of energy in the fork.

For studying this problem, we introduce the waiting-time
distribution W��t�H0�, which is defined as the probability that
the energy process H�t� with initial value H0 ��Hp� is al-
ways less than a critical value Hp until time t, i.e.,

W��t�H0� = Prob��H�t�� � Hp,t� � �0,t��0  H0 � Hp� ,

�23�

where Hp is called the energy threshold. Since W��t�H0� is the
integral of the conditional transition probability density

p��H , t�H0�, the following backward Kolmogorov equation
for W��t�H0� can be derived from the backward Kolmogorov
equation governing the conditional transition probability
density p��H , t�H0� associated with the Fokker-Planck equa-
tion �16�:

�W

�t
= m�H0�

�W

�H0
+

1

2
�2�H0�

�2W

�H0
2 . �24�

The boundary conditions are

W��t�H0 = 0� = finite, W��t�H0 = Hp� = 0. �25�

The initial condition is

W��t = 0�H0 � Hp� = 1. �26�

Equation �24� with boundary condition �25� and initial con-
dition �26� can be solved numerically by using a finite-
difference method of Crank-Nicolson type.

Once the waiting-time distribution W��t�H0� is known, the
probability density ���T�H0� of the first-passage time T can
be obtained as follows:

���T�H0� = − �W���t�H0�/�t�t=T, �27�

while the mean first-passage time ��H0� can be obtained
from ���T�H0� or W��t�H0� as follows:

��H0� = �
0

�

T���T�H0�dT = �
0

�

W��t�H0�dt . �28�

��H0� can also be obtained by solving the following Pontrya-
gin equation:

m�H0�
��

�H0
+

1

2
�2�H0�

�2�

�H0
2 = − 1. �29�

The two boundary conditions for Eq. �29� are ��H0=0�
=finite and ��H0=Hp�=0. Solving Eq. �29� together with the

FIG. 3. Stationary probability density p�E� of the average en-
ergy E �in units of kBTr� for PBD DNA model with different num-
bers of bps. The theoretical results from Eq. �22� are shown using a
solid line and the corresponding results from simulation are shown
by using symbols � �. �=0.6 for 37 °C, �=0.1, N=6.

FIG. 4. Mean square E�yi
2� of bp separation distance yi as a

function of excitation intensity D�; �=0.1, N=3.

FIG. 5. Mean time � �in units of t0� for opening one bp as
function of the bp numbers N in the fork.
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two boundary conditions yields the following exact expres-
sion for ��H0�:

��H0� = 2�
H0

Hp

du�
0

u 1

�2�v�
exp	− 2�

v

u m�w�
�2�w�

dw
dv .

�30�

The denaturation rate is then equal to 1 /�.
In numerical calculation, the following parameter values

are taken: �=1 for T=25 °C and �=0.6 for T=37 °C in
standard salt conditions �10,23�. The initial energy H0
=4.19 is determined according to the potential U�y� of the
fork in the initial state �y1=y2=y3=0 Å, y4=y5=y6=1 Å�;
and the energy threshold Hp=4.78 is determined as the po-
tential U�y� of the fork in the passage state �y1=y2=0 Å,
y3=y4=y5=y6=1 Å�. Some results for the waiting-time dis-
tribution W�t�, probability density ��T� of the first-passage
time, and mean first-passage time � as a function of friction
coefficient � are shown in Figs. 6–8 using solid and dashed
lines. The results from Monte Carlo simulation are also
shown in these figures using symbols � and � for compari-
son. It is seen that the two results are in good agreement.
However, the mean time for opening a bp shown in Fig. 8 is

about 10–400 ps, which is 2–3 orders of magnitude lower
than the open bp lifetime estimated by using NMR �4� and
5–6 orders of magnitude lower than the characteristic relax-
ation time 20–100 �s reported by Ref. �3�. Nevertheless,
the mean time for opening a bp shown in Fig. 8 can be
adjusted to the order of microseconds by choosing the fric-
tion coefficient � of the order of 10−6mbt0

−1. This adjustment
may be reasonable since, on one hand, to yield a result con-
sistent with experiment, the parameters in theoretical analy-
sis often need to be fixed or rescaled �3,13�, and, on the other
hand, so far, the parameters such as the friction coefficient
have no known definite value �14,15�.

V. CONCLUSIONS

In the present paper, the stochastic dynamics and local
denaturation of the thermalized PBD DNA model have been
studied by using the stochastic averaging method for quasi-
Hamiltonian systems. According to the fluctuation dissipa-
tion theorem and the Einstein relation, the thermal fluctua-
tion was taken into account by adding random excitations
and friction terms into the governing equations of the PBD
DNA model. The system was treated as a stochastically ex-
cited and dissipated nonintegrable Hamiltonian system. Sta-
tionary statistics, such as the stationary probability density
p�E� of the average energy and the mean square separation
distance E�yi

2� of bps have been obtained. By treating the bp
opening as a first passage of energy, the statistics for local
denaturation, such as the waiting-time distribution W�t�, the
probability density ��T�, and the mean time � of first passage
of energy, have been obtained theoretically. All the analytical
results have been well confirmed by using the results from
Monte Carlo simulations. Thus, we believe that the proposed
method is very promising and the analytical results provide a
good description of the dynamical behavior and local dena-
turation of the thermalized PBD DNA model. However,

FIG. 6. Waiting-time distribution W�t� for a fork with six pb’s,
�=0.01, D�=�kBTr.

FIG. 7. Probability density ��T� of first-passage time T �in units
of t0� for a fork with six pb’s, �=0.01, D�=�kBTr.

FIG. 8. Mean time � �in units of t0� for opening one bp in a fork
with six pb’s as a function of friction coefficient � �in units of
mbt0

−1�. D�=�kBTr.
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compared with experimental results using NMR and fluores-
cence correlation spectroscopy, the mean bp opening time
found was several orders of magnitude in error. Nevertheless,
it was pointed out that parameters such as the friction coef-
ficient may be adjusted to yield a result consistent with ex-
perimental data.
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